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We investigate numerically the time evolution of a two-dimensional flow submitted 
to a spatially periodic shear force. Initially, the flow is a t  equilibrium, the forcing 
balancing viscous stresses. At Reynolds numbers slightly above critical, a large-scale, 
linear instability drives the fluid towards a stable laminar state. At larger Reynolds 
number turbulence finally develops after several transient states. These transient 
states are described by measuring the divergence rate of linearized trajectories from 
the turbulent flow. This rate gives asymptotically a measure of the first Lyapunov 
exponent of the flow. We find that the first Lyapunov exponent scales as the 
characteristic frequency of the flow at large scale. We show here data on 
incompressible, isothermal and perfect gas (subsonic) two-dimensional flows with 
unit Prandtl number, and Reynolds number around 30. 

1. Introduction 
How does turbulence grow and develop in a fluid? Studies of bifurcations in 

parameter space are interesting and useful to map the possible states of a fluid, but 
they are generally restricted to systems with few degrees of freedom (including fluids 
close to a laminar state), and secondly they often ignore the path taken by the fluid 
to reach its final turbulent state. Phenomenology of fully developed turbulence, or 
closure approximations are also unable to describe the details of the transition. 

We are interested here in following numerically the temporal evolution of a viscous 
fluid initially in an (unstable) equilibrium laminar state, with an initial Reynolds 
number large enough so that the fluid is expected to show a turbulent or 'chaotic' 
behaviour after some time. We will consider a two-dimensional flow with periodic 
boundary conditions in the two directions, submitted to a shearing force, periodic 
in space, stationary in time. The basic flow is harmonic, parallel to the Ox-axis 
(u, = A cos (k'y), uy = 0 ) ,  and forcing balances viscous stresses 

(f, = -p (k f )2A  cos (kfy),fy = 0, 

where p is the viscosity). This is the so-called Kolmogorov flow (Kolmogorov 1960; 
Obukhov 1983). 

Considering spatially two-dimensional (incompressible) periodic flows, different' 
viewpoints may be adopted. The statistical approach was started by Kraichnan 
(1967), who demonstrated the possibility of an enstrophy cascade towards small 
scales, occurring simultaneously with an inverse energy cascade. On the other hand, 
a deterministic approach may be taken : the Kolmogorov flow has thus been shown 
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to be linearly unstable to large-scale perturbation (Meshalkin & Sinai 1961 ; Green 
1974) ; moreover, an asymptotic linear two-time analysis predicts a cascrtde of such 
instabilities towards larger and larger scales (Sivashinsky & Yakhot 1985). 

Evidence of reverse energy transfer has been provided by experimental 
investigations (Couder 1984 ; Sommeria 1986), closure-model calculations (Pouquet 
et al. 1975), and direct numerical simulations of the two-dimensional Navier-Stokes 
equations (Lilly 1969; Frisch & Sulem 1984). She (1987) has studied the successive 
bifurcations of the Kolmogorov flow at small Reynolds numbers. Lafon (1985) has 
studied the case of isotropic forcing a t  intermediate scales. 

We want here to study the fully turbulent Kolmogorov flow, by forcing a t  
intermediary scales, so that energy can flow towards smaller as well as larger scales. 
We are interested by following the development of turbulence, starting from the 
early unstable phase, until a statistically stationary chaotic phase develops. This will 
be done both for incompressible and compressible (isothermal and perfect gas) flows 
a t  moderate Mach numbers (below unity). 

Figure 1 gives a visual impression of the evolution of the velocity field (figure 1 a )  
and spectra (figure 1 b)  so obtained, for an isothermal fluid, a t  Reynolds number 35, 
and initial Mach number 0.7, a t  some characteristic times of the fluid. The large-scale 
instability is clearly apparent. 

In  order to measure the temporal instability or chaos, we shall, in parallel with the 
Navier-Stokes equations, integrate the equations of the linearized flow (i.e. linearized 
around the evolving nonlinear solution). The norm of the linearized solution allows 
asymptotically to measure the (larger) instability rate of the attractor of the flow (or 
first Lyapunov exponent), following the method popularized by Benettin, Galgani & 
Strelcyn (1976). Lafon (1985) has applied this method to the numerical solutions of 
Navier-Stokes equations, for Reynolds numbers slightly above critical, with 
isotropic forcing, The main difference between his work and ours is that, while he 
looked for global measures and bifurcations, we shall try to identify successive phases 
in the time evolution of the flow well above threshold. Note that the isotropic forcing 
precludes identification of clear-cut successive large-scale instabilities ; on the 
contrary, we will be able in this work to relate the variation of the instability rates 
with variations in the characteristic frequency of the fluid in the course of time. 

Most calculations have been done with 64 x 64 points, using a CraylS or XMP. The 
ratio of the largest available scale over the smallest is thus 32. The forcing scale has 
been mostly a of the largest scale. Such a choice of parameters allows maximum 
(initial) Reynolds numbers which are about 30. Note that forcing at smaller 
wavenumbers would certainly provide a larger range to observe large-scale 
instabilities, but would require larger resolutions, and lead to very long times before 
chaos is established, as will be seen below. 

2. Linear instability and first Lyapunov exponent 

stream function $ (the velocity being u = (a$/ay, -a$/ax)) : 
The two-dimensional Navier-Stokes incompressible equations read in terms of the 

(1) 

where F is the forcing amplitude and p is the viscosity. The maximum linear growth 
rate s of the instability of the Kolmogorov flow is, as calculated by Green (1974), 
equal to about one third of the characteristic frequency Oo = KuO, uo being the 
amplitude of the unperturbed flow, and K its wavenurnber. Let us recall the essence 

a$/at = u*(a$/axi) + F cos ( K ~ )  - p  A$, 



Two-dimensional periodic shear flows 243 

of Green's argument. We shall do that by using a Lorenz-like truncation of the 
(Fourier transformed) Navier-Stokes equations ( 1). The minimum set of interacting 
modes is made of the forced (sheared) mode K, a perturbed one L, and of two other 
modes ( M  = K+ L and M' = L - K )  which are obtained by addition and subtraction. 
If we assume for simplicity that L is perpendicular to the shear wavenumber K,  and 
some symmetries (even fields, thus real Fourier components, and $M+$M' = O ) ,  
we are left with the following system for the three modal amplitudes: x = $K, 

y = I j / L , z = $ M :  

The Kolmogorov flow corresponds to X = (+F/pK2, 0,O) : this is clearly a fixed point, 
which is unstable when ro2 > 2(K2 + L2)2/K2(K2 - L2) ,  where ro = 2 X / p  = F/K2  is the 
initial Reynolds number. This implies a critical Reynolds number which varies from 
4 2  (when L = 0 )  to infinity (when L = K ) .  The first eigenvalue s of system (2) 
linearized about the Kolmogorov flow reads, expressed in terms of the amplitude of 
the basic flow uo = F/ (pK)  (see equation (4) of Green's 1974 paper) : 

1 ( L / K ) 2 ( K 2 - L 2 )  
2r0 

s/KuO = - (3)  

From this formula we deduce that the maximum growth a t  large Reynolds number 
obtains for a scale about half the forcing scale (L,,, x 0.64K), which is s x 0.3Ku0. 

More generally, if we consider arbitrary triads, we find that, at infinite Reynolds 
number, a triad is unstable as soon as the forced wavenumber modulus K is in 
between the other two. In  other words, energy transfer from the forced mode is 
possible as soon as there is both a larger and a smaller scale available. Thus we see 
that the large-scale instability actually needs the presence of a ' small ' scale as well. 
Moreover, both the smallest and the largest scales (modes L and M )  grow a t  the 
same rate s. 

Now, it is easily seen that, whatever the value of the Reynolds number, the three- 
mode system ( 2 )  always has stable fixed points, besides the preceding one. Note that 
system (2) can be recast in a form identical to the Lorenz equations, except for a 
supplementary quadratic term, which suffices to stabilize the flow. Thus, although 
one particular triad may possibly be unstable by itself a t  the start, it needs the 
presence, and cooperation of a larger set of modes, to reach chaos in the long term 
(see also Kells & Orszag 1978). 

We shall thus consider a larger subset of modes, obtained by taking isotropic 
truncations of Navier-Stokes equations, as usual in direct numerical simulations. A 
mesh of 64 x 64 points proves to be enough to provide long-time chaotic behaviour 
(it allows Reynolds numbers about 30), while still respecting the physics, i.e. allowing 
to dissipate efficiently the energy which cascades from the injection scales down to 
the smallest scales. 

Linear stability of the initial flow can be studied by following the evolution of 
infinitesimal perturbations &$, i.e. linearizing equation (1) .  To go on when the 
perturbation has become comparable to the mean flow, it is necessary to integrate 
the full Navier-Stokes equation (1)  and, in order to measure the instability of the 
evolving fluid, to integrate in parallel with the Navier-Stokes equations, the 
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equation obtained by linearizing them about the nonlinear solution. The equation for 
the perturbed stream function a$ read : 

as$/at = uj(as$-/ad) + suj(a@/axli) + p  A&@, (4) 

More precisely, we will study the stability of the successive configurations of the 
flow by following the time evolution of the L, norm of the solutions of the linearized 
equations (4), or 'error' E = ( j  (s@)'dxdy);. Note that this definition of the error is 
easily generalized to compressible flows, in which the stream function is replaced by 
a vector field built from the velocity, density and eventually (in the perfect gas case) 
temperature fields. 

The instantaneous error growth rate h(t) = d/dt {log ( ~ ( t ) ) }  provides a measure of 
the local instability rate, and also of the local divergence rate of two independent 
nearby trajectories in phase space. The first Lyapunov exponent is the limit when T 
goes to infinity of the time average of the growth rate h( t ) :  

A ,  = lim loT h(t) dt = lim (112') log ( E ) .  
T-CC T+, 

Note that, in order to gain insight into the dynamical transition to turbulence, we 
will be interested below not only in estimating the asymptotic value A, but also in 
the transient behaviour of h(t). 

We have integrated equations ( 1 )  and (4) in a periodic box [0,27c] x [0,2x]. The 
velocity unit is given by the maximal initial velocity, which gives also the time unit, 
equal to the time necessary to cross a fraction 1/2n of the box a t  maximal velocity. 
The fields are defined on a squared (N x N )  grid. We have modified and used two 
Fourier pseudospectral codes, written by Pouquet, Meneguzzi & Frisch (1986) 
(incompressible case), and LBorat, Pouquet & Poyet (1984) (compressible case). At 
resolution N = 64, 1000 timesteps take in the incompressible and isothermal case 
respectively 18 s and 35 s CPIJ on a CRAYlS. The time difference is due to the fact 
that one needs just one field (the stream function) in the incompressible case, while 
one needs three in the isothermal case, both cases asking for about the same number 
of fast Fourier transforms per timestep. The computation was carried on for several 
tens of thousands of timesteps. 

3. The numerical experiments 
We present results from simulations a t  resolution 64 x 64, with (except for the first 

run CWO, on which we shall first comment) Reynolds numbers around 30, Mach 
numbers below or equal to one, and forcing a t  wavelength kf = 4 (see table 1) .  Runs 
are named with the following convention: the first letter indicates if the flow is 
incompressible (I), compressible isothermal (C), or verifies t'he perfect gas equation 
of state (P). The second letter concerns the nature of the perturbation added to the 
basic Kolmogorov flow: large scale (L), i.e. on a single mode (generally a t  half the 
forcing wavenumber k', which is the most unstable mode), or white noise (W). Both 
initial conditions offer a specific interest. An initial perturbation concentrated on the 
most unstable mode allows comparison with linear analysis during the early unstable 
phase. Subsequently, other large-scale modes may become unstable, but it may take 
a very long time before all modes become excited linearly, since the initial values of 
these modes are fixed by the numerical noise. On the other hand, starting with a 
white noise of order lop3 on all modes will allow us to reach a turbulent state more 
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Run R0 k' U0 MO 

Isothermal CWO 1.6 8 0.707 0.707 
Incompressible IL  24 4 0.707 
Incompressible IW 24 4 0.707 
Isothermal CL 35 4 0.707 0.707 
Isothermal cw 35 4 0.707 0.707 

TABLE 1. Main parameters of simulations. Ro is the initial Reynolds number, kf the forcing 
wavenumber, U o  the initial r.m.s. velocity, Ma the initial r.m.s. Mach number. 

Perfect gas PW 23 4 1 1 

quickly. The Reynolds number is defined in terms of r.m.s. (and not maximal) 
quantities; its initial value reads Ro = ( p )  U o / ( p k f ) ,  where ( p )  is the mean density, 
Uo the r.m.s. amplitude of the initial velocity, p the dynamical viscosity, kf the 
wavelength of the shear (the minimum wavelength available is unity). Note that the 
critical value for the first bifurcation given in the preceding section, ro = 2/2, reads 
now Ro = 1 .  M o  = U o / c  is the initial Mach number. In what follows, the runs will be 
commented on in the order of table 1 : first the low-Reynolds-number isothermal run, 
then the ' turbulent ' ones (incompressible, compressible isothermal, and perfect gas). 
We shall also use the integral and Taylor Reynolds numbers R' = ( p )  U/,uk' and 
RT = ( p )  U / p k T ,  where U is the r.m.s. velocity, and the wavenumbers are defined 
from the total energy spectra E ( k )  : ki = J E ( k )  d k / { J E ( k )  dk/k} and 

kT = {J k2E(k) dk/ J E( k) dk];. 

We first comment on the low Reynolds run CWO, corresponding to an isothermal 
flow with Reynolds Ro = 1.6 slightly higher than the critical value 1,  with a shear- 
wavenumber kc = 8 (i.e. 8 wavelengths in the periodic box), and a Mach number 
0.7. The y-component of the initial velocity is a white noise of small amplitude. 

The main feature (shown on figure 2) is the energy transfer from the Ox- to Oy- 
component in the large scales (figure 2c) : the final state of the flow has a substantial 
component perpendicular to the shear force. Moreover, the characteristic scales 
increase significantly (figure 2 b ) ,  thus indicating that a large-scale instability is 
effective here, as in the incompressible Kolmogorov flow. However, the large-scale 
instability stops and the flow becomes steady and laminar after T = 60. 

During the unstable phase, which lasts until T = 50 (about 280 nonlinear turnover 
times t , ,  = l/(kfU) = 0.18), energy is transferred to a larger scale (the integral 
wavenumber k' goes from kf = 8 down to 4.5), and (partly) to the y-component of 
impulsion. This large-scale transfer is actually strongly anisotropic : the y-component 
of energy accumulates a t  ahf, as in the linear analysis of the incompressible case 
a t  very small Reynolds numbers (cf. equation (3) and figure 1 of Green's paper), 
while the x-component remains peaked around kc. Harmonics (k = 16,24) grow 
immediately (see figure 2c), indicating that, in parallel with the linear large-scale 
instability, nonlinear transfer towards smaller scales is also a t  work. 

All activity stops after about T = 60: r.m.s. values of the impulsion components 
and density fluctuation, characteristic wavenumbers remain constant, as well as the 
error e, indicating a stable configuration. An estimate of the duration of the 
preceding unstable phase as shown on figure 1 is obtained by writing that the 
linearized perturbation reaches an amplitude comparable to that of the main initial 
shear. The saturation of the error curve suggests a zero Lyapunov exponent 
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FIGURE 2. Low Reynolds number isothermal flow : development of large-scale instability followed 
by a laminar steady state (run CWO: Ro = 1.6, see table 1). ( a )  Growth of the logarithm of the error 
(right-hand axis) versus r.m.s. amplitudes of nonlinear solution (s- and y-components of impulsion, 
and density fluctuation). ( b )  Log (error) growth versus evolution of integral and Taylor 
wavenumbers k' and kT. (c) Spectra of z- and y-components of impulsion (time is T = 100). Note 
that the perpendicular component dominates a t  wavenumbers larger than k = 8 a t  time T = 100 
(see ( c ) ) .  However, the maximum energy still lies at k = 8, which determines the total energy ratio 
in favour of the parallel component (see (a)) .  

A ,  = 0. This does not exclude strict stability. Indeed, there are always linear 
solutions with constant norm (constant error 8) hence null growth rate, corresponding 
to the fact that two equilibrium solutions differing by a translation parallel to the 
Ox-axis remain a t  equilibrium : these solutions do not allow the maximal exponent 
to be negative. However, note that the travelling-wave solutions described by She 
(1987) would lead to a zero growth rate as well. 

We have obtained completely analogous results for low-Reynolds-number 
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FIGURE 3. Error growth for different initial perturbations of the basic Kolmogorov flow. Curve 
‘test ’ : basic flow : unperturbed steady flow. Curve IL : large-scale perturbation of the basic flow. 
Curve IW : white noise perturbation of the basic flow. Note that in the ‘test ’ case, the basic flow 
is steady because forcing balances dissipation, and the nonlinear terms are zero. The slope of the 
error curve thus measures the instability rate of the basic flow, after a short period of adaptation 
of the error field. 

Time 

incompressible Kolmogorov flows, indicating no significant differences with com- 
pressible flows a t  initial Mach number M a  = 0.71 

We now turn to the case of chaotic flows. To obtain a chaotic regime, we force a t  
a larger scale (kf = 4), so that more modes are available between the forcing scale and 
the smallest scales. This allows us to reach a maximum Reynolds number Ro of about 
30 at resolution 64x64. The most unstable mode of the shear flow is now the y- 
component a t  k = 2 = +kf (we are now in the large-Reynolds-number regime of 
Green’s formula, as recalled in the preceding section). 

In  order to calibrate the error curve, we compare in figure 3 the instability rate of 
the unperturbed, stationary flow (denoted ‘test ’ flow in the figure) and those of the 
perturbed flows, in the incompressible case. During a short period of time, the error 
first decreases. This is due to the way the initial error spectrum is prepared : all modes 
have comparable error amplitudes, and thus the decaying (linearly stable) modes 
dominate a t  very short times, leading to the decay of the total error E .  The log E curve 
then takes on a constant slope, which gives a measure of the linear instability rate 
of the initial Kolmogorov flow. This slope remains the same for all three flows, as long 
as the same linear instability develops. One may check that the time length of 
this period is found by writing that the amplitude of the perpendicular mode a t  
k = 2 = gkf varies as eAt, where A is the constant slope, and has reached order unity. 
The difference in times between runs I L  and IW comes from the difference in the 
initial amplitude of the most unstable mode. 

Notice that, contrary to the low-Reynolds-number case (run CWO), the error does 
not saturate : looking a t  longer integration times, the instability rate takes smaller, 
but positive values in the subsequent phases (see figure 4). 

The details of subsequent evolution depends on the initial conditions. Consider 
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FIGURE 5 .  Incompressible Kolmogorov flow with white-noise perturbation : growth of the norm of 
the linearized solution (error) and r.m.s. amplitudes of nonlinear solution (run IW, Ro = 24). (a) 
Detail of short-time evolution: growth of perturbation u, a t  large scale until about T = 10: the 
y-direct'ion is then only slightly dominant. (b )  Later evolution : note that large-scale chaotic 
fluctuations start here immediately after the first instability (T = 10). 

FIGURE 4. Incompressible Kolmogorov flow with large-scale perturbation : growth of the norm of 
the linearized solution (error) and r.m.s. amplitudes of nonlinear solution (run IL, Ro = 24). ( a )  
Detail of short-time evolution: growth of perturbation u, at large scale until about T = 6. The 
y-component of the flow then largely dominates. (6 )  Later evolution: note the sudden onset of 
chaotic fluctuations at T = 100, and the corresponding break in the log (error) curve. (r) Spectra of 
s- and y-components of impulsion a t  time T = 320. 
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FIQURE 6. Isothermal Kolmogorov flow with large-scale perturbation : growth of the norm of the 
linearized solution (error) and r.m.s. amplitudes of nonlinear solution (run CL, Ro = 35). (a) Detail 
of short time evolution. (b )  Transition to turbulence: note (as in figure 4) the long transient phase 
with dominance of y-component, before large-scale chaos appears, and the corresponding break in 
the log (error) curve. 

first the case of incompressible flow, with large-scale perturbation (run IL). Figures 
4 ( a )  and 4 ( b )  show the behaviour of x and y r.m.s. components of velocity and the 
error. After the first instability phase, which leads to complete reversal of anisotropy, 
(at about T = 4, energy is mainly orthogonal to the forcing), there is a long period 
during which still larger scales develop starting from numerical noise, with a quiescent 
quasi-laminar flow a t  large scale. After about T = 100, these larger scales too become 
of order one, and a third phase begins, showing chaotic fluctuations of large-scale 
components. The energy spectrum shows that small scales are fully excited : compare 
figure 4(c) with the low-Reynolds-number spectrum of run CWO (figure 2 c ) .  Looking 
at the detailed evolution of modes shows that the y-component of impulsion at  k = 2 
grows first and saturates at  about T = 4, then the x-component at k = 1 grows and 
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FIGURE 7 .  Isothermal Kolmogorov flow with white-noise perturbation : growth of the norm of the 
linearized solution (error) and r.m.s. amplitudes of nonlinear solution (run CW, Ro = 35). Note 
again (as in figure 5 )  that chaos sets in immediately after the first instability. 

saturates a t  about T = 120. The large contrast between both durations comes from 
the large difference in the initial amplitudes of the unstable modes: the energy of 
mode ( k ,  = 2, k ,  = 0) is initially about 310-5, whereas for mode (k, = 0, k ,  = l),  it  is 

A striking feature is that each of the three phases may be identified by looking a t  
the error (log E) curve : one sees three different slopes, corresponding to three different 
growth rates A. Notice also that, contrary to what one would naively expect, the 
mean growth rate is lower for phase 2 that phase 1, and smallest for the last, chaotic 
phase. 

If, instead of concentrating the perturbation on only one mode, we start with a 
white noise perturbation, we do not observe a second laminar instability phase 
between the first phase and the chaotic phase (run IW, figure 5). This is clearly due 
to the fact that all unstable modes are substantially excited a t  T = 0, and saturate 
at about the same time (T = 8 in figure 5). The average error growth rate is again 
lower in the final stage, although a local high slope appears around T = 300 (the 
average slope of log E is recovered after the break). This local break is coincident with 
a temporary predominance of the horizontal component of the flow. 

We have found that isothermal flows exhibit comparable features (runs CL and 
CW, see figures 6 and 7).  Starting from zero, the density fluctuations grow with the 
first instability. The phenomenology of weakly compressible turbulence predicts that 
the density fluctuations scale as M 2  (see Klyatskin 1966); we find here that 
@ / M 2  varies from 0.2 in the phase of large-scale instabilities to 0.5 in the chaotic 
phase. Again, we see in the case of large-scale initial perturbation (run CL, figure 6) 
three phases, with a long plateau in the second phase, during which the Oy- 
component dominates, while the second quiescent phase is absent when starting with 
a white noise (run CW, figure 7) .  

In  the experiments with the perfect gas equation of state, we have considered 
white noise initial perturbations, with an initial Mach number equal to unity (run 
PW). The evolution of the Mach number (figure 8a)  shows a sudden decrease down 

10-30. 

9 F L Y  195 
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Time 

60T T '  

FIGURE 8. Perfect gas Kolmogorov flow with white-noise perturbation : growth of the norm of the 
linearized solution (error) and r.m.s. amplitudes of nonlinear solution (run PW, Ro = 23). ( a )  
Growth of the norm of the linearized solution and r.m.s. amplitudes of 2- and y-components of 
impulsion and density fluctuations. ( b )  Evolution of Reynolds numbers K' and RT based on integral 
and Taylor scales, and Mach number M .  

to a rather low value 0.3, followed by a slow decay: the first period corresponds to 
an early transfer from kinetic to internal energy, while the subsequent phase is 
related to a slow increase in temperature a t  approximately constant kinetic energy 
(see the quasi-constant curve of integral Reynolds number). The oscillations of the 
Taylor-Reynolds number after T = 40 correspond to  the energy exchange between x- 
and y-components visible on figure 8 ( b ) ,  the y-component being a t  larger scale. 
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First instability phase 

Run T' T2 h U k' A152 

IL  3 5 0.86 0.7 4 0.31 
IW 3 10 0.73 0.7 4 0.26 
CL 2 6 0.55 0.7 4 0.20 
cw 5 10 0.75 0.7 4 0.27 
PW 6 10 1.01 1.0 4 0.25 

Chaotic phase 

T' T2 h U k' A152 
120 320 0.12 0.41 1.80 0.16 
10 480 0.05 0.45 1.11 0.11 

140 200 0.08 0.40 1.78 0.11 
10 100 0.13 0.48 1.70 0.16 
40 100 0.06 0.59 1.08 0.10 

TABLE 2. Characteristic quantities of the flow in the first and last phases. k' is the integral 
wavenumber. U is the average r.m.s. velocity. 52 is the characteristic frequency of the flow (52 = k'U). 
In  the first phase, k' is close to the forcing wavenumber k', and U is close to the initial value U o .  
h is the average divergence rate of trajectories in phase space (estimated between times T' and T2). 
Its  value in the chaotic phase is an estimate of the first Lyapunov exponent of the turbulent 
attractor. 

The r.m.s. components show several phases (see figure 8 a )  : first, the 2-component 
grows, then saturates (while the y-component grows), then both components 
exchange themselves in a random way, and finally they slowly oscillate. To each of 
the four successive phases corresponds a different average slope of the error curve. 
One finds that the characteristic period of the long oscillations is near to about 2 /A,  
where A is the instability rate evaluated on the corresponding time interval (50,100). 
Remark that such long-period, large-scale fluctuations are also visible in the other 
(incompressible and isothermal) runs, although less regular and more chaotic (see 
figures 4b, 5b, 6 b ,  7 ) .  

Note that in the perfect gas experiments, we cannot reach a stationary state, since 
we inject kinetic energy and thus accumulate thermal energy generated by viscous 
stresses. Note also that, due to increase of thermal energy, the Mach number quickly 
drops from one to about 0.3. This value has also been found in free decay calculations 
(Passot & Pouquet 1987). 

4. Discussion 
Two different physical processes are at work in the flow studied here: a t  first, an 

exponential growth of linear unstable modes at large scales, then eventually, as the 
largest scales become saturated, the onset of turbulence (all modes participating 
nonlinearly). There is a good agreement between compressible and incompressible 
runs, in the range of Mach numbers considered (up to one initially, but note that the 
final r.m.s. values are much lower, smaller than 0.4). 

An important feature of the flow in its chaotic state is the ability to develop long 
period (and large scale) chaotic fluctuations of velocity after a preliminary quick rise 
of these large scale components. This process is well illustrated by the piecewise 
monotonic growth of the error curve as a function of time : the slope is always lower 
in the last, chaotic phase. Why does the last, chaotic phase possess the slowest 
timescale '1 This could be due simply to the excitation of the largest scales having 
lower characteristic frequencies. In  order to test this hypothesis, we have rescaled the 
divergence rates by dividing them by the characteristic frequency SZ, defined as the 
product of the integral wavenumber Ic' and r.m.s. velocity U .  Table 2 summarizes 
the data obtained in the first instability phase and the chaotic phase: we have 
indicated the time intervals [TI, T,] between which the instability rates A are 

9-2 
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measured. Rescaling is seen to reduce much of the variation of h : the early rescaled 
values gather around 0.3, while the last phase's values are about 0.1. 

Note that the first relation, h = 0.352, agrees reasonably well with that found 
analytically by Green (1974). Relation (3) gives, a t  Reynolds number 35, 

s = 0.25Ku0 = 0.3652 

since there is a factor 2/2 between r.m.s. and maximum values of the velocity 
(respectively U o  and uo). 

Similar agreement can also be found in the intermediary phases of large-scale 
transfer (not given in the table) although the flow a t  that time is different from the 
initial Kolmogorov flow considered by Green. For instance, we find for run CL 
between T = 20 and T = 130, A x 0.23 and h/52 x 0.32 (see figure 6 b ) .  

The fact that, even after resealing, the divergence rate still appears significantly 
lower in the t,urbulent phases may be explained in several ways. It may be due to 52 
being a too rough a measure of the intrinsic frequency of the flow, or to the numerical 
algorithm : in the early quasi-linear phase, h gives effectively the maximal instability 
rate, while in the chaotic phase, where the eigcnfunctions of the system change more 
quickly with time, the algorithm might give a lower average. 

There is good quantitative agreement, in the chaotic regime, between the 
timescales (inferred from visual inspection) of the large-scale fluctuations of r.m.s. 
components of velocities and the values of the divergence rate h : first the quasi-linear 
growth of the perpendicular component occurs with a characteristic time of about 
3 turn-over times; then the chaotic fluctuations have a longer timescale, around 
20 turn-over times. These long timescales may be related to the absence of substantial 
excitation of small scales in the two-dimensional flows studied here, as opposed to 
three-dimensional flows. 

A similar scaling of the first Lyapunov exponent with the characteristic frequency 
( A  = 1/352) has already been found in the framework of a model of three-dimensional 
turbulence (Grappin, LBorat & Pouquet 1986) : in the latter work, the characteristic 
frequency is determined by the small scales of the flow, and is many orders of 
magnitude greater than the values obtained here, where the characteristic frequency 
is that of the large scales. 

To the relative smallness of the first Lyapunov exponent of two-dimensional 
Kolmogorov flows corresponds the smallness of the Lyapunov dimension, which has 
been found to be around 10 when kf = 2 and 25 when k' = 4, although the system has 
several thousand degrees of freedom (Grappin & L6orat 1987). 

In  conclusion, we have found that in two-dimensional Kolmogorov flow, the 
chaotic timescale, as given either by large-scale r.m.s. fluctuations or by the largest 
Lyapunov exponent is based on the largest scales available in the simulation. We 
have performed higher resolution runs (128 x 128 points, initial Reynolds number 
R' = 70, average integral Reynolds number R' z 130), which show that the scaling 
of the largest Lyapunov exponent on the characteristic frequency does not depend 
on the Reynolds number, as soon as it is above critical, say larger than 10. 
Comparison between the incompressible and compressible runs reported here shows 
that our result does not depend on the Mach number for subsonic flows either. For 
turbulent flows with more realistic boundaries, one may ask if the scaling law for the 
first Lyapunov exponent remains valid. 

These considerations have some bearing on the predictability concept. The 
predictability of large-scale circulation in the atmosphere and oceans is affected by 
the growth of observational errors which contaminate larger and larger scales, 
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starting from the lack of determination of small scales of motion (Thompson 1957 ; 
Lorenz 1969). Although predictability issues may be posed entirely in a linear 
context, numerical studies usually consider an error whose initial growth is ruled by 
nonlinear transfer from small to large scales. The error we have considered here has 
two characteristics: it is a linearized quantity, and it takes all scales into account, 
being a (quasi-) L, norm of the linearized solution. A comparison between 
predictability results and Lyapunov timescales needs a discussion of the ratio of the 
nonlinear large-scale transfer of the error to the instability rate a t  large scales. In  the 
case of closure approximation like EDQNM (Herring 1983; MBtais & Lesieur 1986), 
since linear instabilities are absent from the approximation, the predictability time 
is given by a nonlinear (inverse) transfer time. Similar computations by direct 
simulations would require to integrate two nonlinear solutions of the Navier-Stokes 
equations, differing initially only in the small scales. 

Research on the same kind of forced flows, now in progress, includes modelling 
both the large-scale instability and the onset of turbulence, and computation of 
Lyapunov exponents in three-dimensional flows. 
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